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Abstract: Over the past decade, a large amount of RNA sequencing (RNA-seq) data were deposited in
public repositories, and more are being produced at an unprecedented rate. However, there are few
open source tools with point-and-click interfaces that are versatile and offer streamlined comprehensive
analysis of RNA-seq datasets. To maximize the capitalization of these vast public resources and facilitate
the analysis of RNA-seq data by biologists, we developed a web application called OneStopRNAseq
for the one-stop analysis of RNA-seq data. OneStopRNAseq has user-friendly interfaces and offers
workflows for common types of RNA-seq data analyses, such as comprehensive data-quality
control, differential analysis of gene expression, exon usage, alternative splicing, transposable element
expression, allele-specific gene expression quantification, and gene set enrichment analysis. Users only
need to select the desired analyses and genome build, and provide a Gene Expression Omnibus
(GEO) accession number or Dropbox links to sequence files, alignment files, gene-expression-count
tables, or rank files with the corresponding metadata. Our pipeline facilitates the comprehensive and
efficient analysis of private and public RNA-seq data.

Keywords: RNA-seq; workflow; pipeline; web application; quality control; visualization; differential
gene expression; alternative-splicing analysis; allele–specific expression quantification; differential
transposable element expression analysis; differential exon usage; GSEA

1. Introduction

The transcriptome is composed of diverse species of RNA, including protein-coding messenger
RNA (mRNA) and noncoding RNA (ncRNA), and both are transcribed and expressed in a broad range
of abundance in a given cell type [1]. mRNA is the essential intermediate in gene expression, bridging
the genome to protein function [2]; ncRNAs can regulate gene expression by modulating chromatin
formation and regulation, translation, macromolecule interactions, or even catalytic processes [3–5].
The transcriptome dynamically changes in response to internal and external cues; thus, it can be
used as a proxy for gene-transcription activities [6,7], and abundance of gene end products on the
bulk level under steady-state conditions [8–10]. With the development of numerous molecular
techniques, the identification and quantification of transcriptome components has been one of the most
convenient and informative avenues to understanding the molecular mechanisms of many biological
processes and their regulation [2,11]. In particular, next-generation-sequencing (NGS) technologies
have revolutionized the study of transcriptomes due to their single-base resolution, high sensitivity,
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high throughput, and broad dynamic range, and have dramatically decreased costs over the past
decade [1,12,13].

First reported in 2008, RNA sequencing (RNA–seq) is a state-of-the-art method that characterizes
the transcriptome by sequencing transcripts using NGS technologies [14]. Over the years, RNA–seq
protocols have been improved to increase sensitivity, accuracy, and reproducibility, with reduced
biases [13,15–18]. RNA–seq has been widely used to profile the changes of transcriptomes between
conditions to understand the cause and effect of biological processes through differential
gene-/transcript-/exon-expression analysis [19,20]. Beyond differential gene-expression analysis,
RNA–seq can also be applied to achieve more detailed transcriptome characterization, including the
analysis of alternative splicing (AS) and transposable-element (TE) expression, RNA modification
and editing, and the identification of novel transcripts. Accordingly, RNA–seq has proven an ideal
approach for novel transcriptome assembly, which is especially helpful for genome annotation for
non-model organisms. As it is sequence-based, RNA–seq has also proven helpful in identifying
expression genetic variants, for expression quantitative trait loci (eQTL) analysis, and even clinical
diagnosis [19,21–25]. Furthermore, RNA-seq data play an important role in systems biology when
integrated with other “omics”-scale data [26–31]. In summary, RNA–seq has been widely used in
many fields, from basic research to clinical applications [32].

To date, hundreds of thousands of RNA-seq datasets and their metadata have been deposited
to public data repositories such as NCBI GEO [33] and SRA [34], and data portals hosted by
consortia, such as ENCODE (https://www.ncbi.nlm.nih.gov/geo/info/ENCODE.html), GTEx (https:
//www.gtexportal.org/home/datasets), and TCGA (https://isb-cancer-genomics-cloud.readthedocs.io/

en/latest/sections/data/TCGA_top.html). As the cost of high-throughput sequencing continues to
decrease, the amount of publicly available RNA-seq data continues to expand.

Accompanying the large volume of RNA-seq data, a number of open source software packages
were developed, from basic raw-read quality control (QC) to advanced pathway and network analysis
(see review [35]). However, most of these open source tools are usually limited to a particular analysis
step and have specific requirements on input types/formats. Users usually have to find multiple
distinct packages and integrate them into a workflow to accomplish comprehensive RNA-seq data
analysis. As a result, a certain level of programming skills is needed, which deters most biologists
from analyzing RNA-seq data.

A few graphical-user-interface (GUI)-based applications, such as Strand NGS (https://www.strand-
ngs.com/), CLC Genomics Workbench (https://digitalinsights.qiagen.com), Lasergene Genomics (https:
//www.dnastar.com/software/genomics/), OmicsBox (https://www.biobam.com/omicsbox), Basepair
(https://www.basepairtech.com/), and Partek Genomics Suite (https://www.partek.com/partek-
genomics-suite/), have been commercialized to facilitate biologists analyzing sequencing data, but these
commercial tools are usually very expensive.

To meet the demands of many researchers without programming skills, dozens of free GUI- or
web-interface-based workflows for RNA-seq data analysis were developed over the years. However,
some of them suffer from a lack of maintenance and are outdated or even discontinued; others
only have limited functionality. A full comparison of RNA-seq data-analysis workflows is shown in
Supplementary Table S1. Well-maintained, fully featured, biologist-friendly analysis workflows are
still needed.

To maximize the capitalization of existing RNA-seq data, and enable biologists to analyze their own
data and public RNA-seq datasets easily and rapidly, we developed web application OneStopRNAseq
for the one-stop comprehensive analysis of RNA-seq data. It contains modules for read quality
assessments (QA), read alignment, post-alignment RNA-seq-specific QA, count summarization,
and differential gene expression (DGE), differential exon usage (DEU), and differential alternative
splicing (DAS) analyses. It also supports differential transposable element expression (DTE) analysis,
allele-specific gene expression (ASE) quantification, GO terms and KEGG pathway overrepresentation
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analysis, and MSigDB-based gene-set enrichment analysis (GSEA). In addition, OneStopRNAseq
provides solutions for expression-count-table-based data analysis and visualization.

Our workflow is biologist-oriented, with intuitive web interfaces for uploading data, and browsing
and downloading results. We modularized the workflow implementation to enable streamlined analysis,
easy maintenance, and feature expansion upon user feedback and requests.

2. Materials and Methods

2.1. Implementation

OneStopRNAseq is implemented as a web application hosted by an Apache web server. A MySQL
relational database is used at the back end, and the business/presentation layer is written in PHP.
The Snakemake workflow-management system [36] was used to build the robust, reproducible,
and scalable analysis pipeline. The common parameter settings for different types of analysis workflows
were prepopulated, and some can be easily customized to meet users’ specific needs.

OneStopRNAseq employs the widely used FastQC [37] to check raw read quality, and MultiQC [38]
to generate an integrated report. The workflow adopts STAR for read alignment [39]. Currently, RNA-seq
data analyses based on human, mouse, yeast, fruit fly, zebrafish, and worm genomes are supported.
However, other genomes can be easily added in response to users’ requests. Post-alignment RNA-seq
quality control is performed using QoRTs [40] to output the most comprehensive visualization of
quality metrics of RNA-seq data. The workflow uses featureCounts [41] to obtain a gene-level count
table from BAM files, rMATS [42] for detecting DAS, DEXseq [43] for DEU analysis, SalmonTE [44] for
TE expression quantification, DESeq2 [45] for DGE and DTE analysis, ASEReadCounter of GATK [46]
for allele-specific expression quantification (ASE), and GSEA [47] for gene-set-enrichment analysis.

OneStopRNAseq is freely accessible to academic users at https://mccb.umassmed.edu/OneStopRNAseq.
The Snakemake workflow is available for downloading or contributing at https://github.com/radio1988/

OneStopRNAseq.

2.2. RNA-Seq Data

To demonstrate the utility of our pipeline, we reanalyzed a public RNA-seq dataset (GSE151286)
from the GEO repository [48]. Briefly, RNA-seq data consisted of eight human lung-tumor cell line
NCI-H526 samples with two biological replicates for each treatment-by-time combination. Cells were
treated with either DMSO vehicle control (CK) or 0.5 µM of USP7 inhibitor USP7-797 (USP7797) for
24 or 48 h. Data were generated using unstranded RNA-seq libraries and sequenced on an Illumina
NovaSeq platform in 2 × 100 bp paired-end mode.

3. Results

3.1. Functionality Summary of the OneStopRNAseq Application

OneStopRNAseq (https://mccb.umassmed.edu/OneStopRNAseq) is an easy-to-use web application
designed for the comprehensive analyses of RNA-seq data for both biologists and bioinformaticians.
In order to simplify and streamline RNA-seq analyses, we integrated a set of widely used
analysis components into our pipeline, including DGE, DEU, DAS, GSEA, and DTE analyses,
and ASE quantification.

To make it convenient for users, we implemented four major analysis paths with different analysis
entry points, i.e., raw FASTQ files, binary alignment map (BAM) files, gene-expression count table
files, and rank files (Figure 1). Users can select the analysis path on the basis of the type of available
data and types of desired analysis. If users start the analysis with FASTQ files, all types of analyses are
performed, although ASE quantification requires users to provide an additional variant-call-format
(VCF) file containing genotype information. To perform DGE analysis and GSEA, users can also start
with a gene-expression count table. To merely run GSEA, users only need to upload a ranked gene list.

https://mccb.umassmed.edu/OneStopRNAseq
https://github.com/radio1988/OneStopRNAseq
https://github.com/radio1988/OneStopRNAseq
https://mccb.umassmed.edu/OneStopRNAseq


Genes 2020, 11, 1165 4 of 14

A detailed user guide is included as a supplementary file, and it is also available under the Help menu
at https://mccb.umassmed.edu/OneStopRNAseq, which will be updated when additional features
are added.Genes 2020, 11, x FOR PEER REVIEW 5 of 15 
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Figure 1. Overview of analysis workflows implemented in OneStopRNAseq. Software packages for
each analysis task are shown in brown round-cornered rectangles enclosed by round brackets and
along vertical black arrows.

Private RNA-seq data are stored locally or more commonly in commercial cloud-storage spaces
such as Dropbox, OneDrive, Google Drive, Box, and pCloud, which provide high data security,
simple data sharing, and easy data management. Among them, Dropbox has emerged as a popular
cloud-storage space for data sharing (https://www.pcmag.com/picks/the-best-cloud-storage-and-file-
sharing-services). To use OneStopRNAseq to analyze RNA-seq data in Dropbox, users can simply
provide shared Dropbox links to their data and sample information (metadata) through the web
interface or upload an Excel spreadsheet with the required metadata, and specify the conditions
to compare.

OneStopRNAseq is also optimized for analyzing public datasets. To analyze RNA-seq data in
the GEO database, users only need to input accession number(s) of interest, verify or modify the
automatically retrieved metadata, and specify the conditions to compare.

Additionally, we integrated DEBrowser [49] and Shiny-Seq [50] for the interactive exploratory
analysis of gene-expression data and differential gene-expression analysis. With both Shiny apps,
users can start with gene-expression count tables, perform exploratory data analysis with boxplots
and principal-component-analysis (PCA) plots, batch-effect correction, DGE, gene coexpression
analysis using WGCNA [51], over-representation analysis of GO terms, KEGG pathways, and disease
ontology terms, and GSEA. Alternatively, users can start with FASTQ files and perform Kallisto-based

https://mccb.umassmed.edu/OneStopRNAseq
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pseudoalignment [52] to quickly obtain a gene-expression count or transcripts-per-kilobase-million
(TPM) [53] tables and perform all interactive analyses as above using Shiny-Seq.

At the back end, the Snakemake workflow management system is used for reproducible
and scalable data analyses. The workflow is open source, so users can find out exactly which
analyses are being performed and which parameters are being used. Bioinformaticians and power
users can also download workflows and run the analysis in their own Linux workstation or
high-performance-computing (HPC) system, with most of the package installed automatically
with Anaconda (https://www.anaconda.com/) or wrapped in singularity (https://singularity.lbl.gov/)
images. To download the workflow, please visit our GitHub repository (https://github.com/radio1988/

OneStopRNAseq).

3.2. Case Study Validating OneStopRNAseq Application Functionalities

We reanalyzed a recently published RNA-seq dataset GSE151286 [48] to illustrate the utility of our
OneStopRNAseq application. All analysis modules except for allele-specific expression quantification
were performed using the software and parameter settings listed in Supplementary Table S2, which is
also available under the About menu at https://mccb.umassmed.edu/OneStopRNAseq.

First, the sequencing quality of the raw reads of individual FASTQ files was checked
using FastQC [37]. The final all-in-one quality-control report was generated using MultiQC [38].
Representative plots showing multiple quality metrics of raw sequencing data are shown in
Supplementary Figure S1 and Figure 2A. To perform RNA-seq data-specific quality control, BAM files
produced by STAR [39] were analyzed using QoRTs [40]. Examples of relevant plots showing RNA-seq
data quality are shown in Figure 2B–I. Both FastQC and QoRTs analyses demonstrated that the RNA-seq
data were of high quality.

A gene-level read-count table was generated using featureCounts [41]. Principal component
analysis (PCA) and Poisson distance plots (Figure 3A,B) demonstrated that gene expression
profiles of USP7797-treated samples were clearly different from those of CK samples. Differentially
expressed genes were identified using DESeq2 by testing three contrasts: CK_24h—USP7797_24h,
CK_48h—USP7797_48h, and (USP7797_48h—USP7797_24 h) – (CK_48h—CK_24h). The volcano plot
(Figure 3C) and heatmap (Figure 3D) display the differentially expressed genes between CK samples
and those treated with USP7797 at 48 h post treatment. MSigDB-based gene-set enrichment analysis
(GSEA) verified the results reported by the original publication [48]. For example, USP7797 treatment
downregulated the expression of many genes involved in the cell cycle (G2M checkpoint, mitotic spindle,
mitotic cell cycle; Figure 4A–C). USP7797 treatment also upregulated the expression of genes that
are normally silenced by polycomb repressive complex 2 (PRC2) (Figure 4H–L [54]). Additionally,
USP7797 treatment downregulated the expression of genes responsive to DNA damage stimulus
(Figure 4D), and those facilitating histone acetylation and ubiquitination (Figure 4F and Supplementary
Table S3. The expression of many E2F targets was downregulated, and many genes involved in
ion transportation were upregulated by USP7797 (Figure 4F,G). Gene ontology–biological process
terms (protein monoubiquitination, protein polyubiquitination and histone deubiquitination) and
associated gene sets were enriched among downregulated genes in response to USP7797 treatment
(Supplementary Table S3). These gene-set-enrichment analysis results are consistent with the role of
USP7797 as a small-molecule inhibitor of the ubiquitin-specific peptidase (USP7) that cleaves ubiquitin
from its substrates [48,55].

https://www.anaconda.com/
https://singularity.lbl.gov/
https://github.com/radio1988/OneStopRNAseq
https://github.com/radio1988/OneStopRNAseq
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Figure 2. Representative plots showing quality control results generated by FastQC/MultiQC and
QoRTs. (A) Top part of the HTML report generated using MultiQC by integrating the individual
QC report outputted by FastQC. (B-I) Representative post-alignment QC plots generated by QoRTs.
(B) Distributions of RNA-seq library insert sizes. (C) Cumulative gene assignment diversity. (D) Read
coverage along gene body. (E) Percentage of reads mapped to different genomic regions. (F) Numbers
of known and novel splicing junctions. (G) Percentages of known and novel splicing junctions.
(H) Percentages of reads mapped to non-autosomes. (I) Strandedness of RNA-seq libraries.

In addition to differential gene-expression analysis, as performed by Ohol et al. [48], we performed
differential exon-usage and alternative-splicing analyses using the OneStopRNAseq application.
We identified 819 and 4666 exons of differential usage (|log2(fold change)| ≥ log2(1.5) and FDR < 0.05)
for contrasts USP7797_24h—CK_24h and USP7797_48h—CK_48h, respectively. Only two exons showed
significant time-by-treatment interaction effect on differential exon usage (FDR < 0.05). Figure 5 shows
one of the top differentially used exons between the sample treated with USP7797 and the CK at
48 h post treatment. We also identified a small number of differential alternative splicing events
(see Supplementary Table S4); thus, OneStopRNAseq facilitates the simultaneous identification of
alternative-splicing events, differentially used exons, and differentially expressed genes, which can be
used to generate potential hypothesis for further investigation.

3.3. Runtime of OneStopRNAseq Application

Estimating expected runtimes for computational pipelines can be challenging, as they are
influenced by multiple variables, including the size of the input-data files, the number of available
numbers of central processing units (CPU), and the amount of random-access memory (RAM) per CPU,
as well as the potential number of parallel threads used for each job. Overall wall-clock times depend
on the availability of the computing resources when jobs are submitted, job dependency, and the actual
runtime of each job. Figure 6A shows the topological structure of the workflow. Here, we provide the
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job creation, finish timeline (Figure 6B), and runtime of each job for the case study given the computing
resources specified by the current implementation (Supplementary Table S2). On the basis of Figure 6B,
overall wall-clock time was determined by DEXseq jobs, which were created at a later time because
they depended on prep_count jobs. Task DEXseq had the longest runtime (530 minutes) due to the
large number of exons to be analyzed, followed by tasks prep_count and QoRTs (Figure 6C). Overall,
the whole analysis process was finished within 15 h.
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Figure 3. Exploratory and differential expression analyses of RNA-seq data. (A) Principal-component
analysis of sample relationship. (B) Poisson distance plot of sample dissimilarities in terms of
transcriptomic profiles. (C) Volcano plot of shrunken log2 (fold change) and –log10FDR of all tested
genes between vehicle-control (CK) samples and samples treated with USP7797 at 48 h post treatment.
Genes with|log2(fold change)| > log2(1.5) and FDR < 0.05 (significantly differentially expressed genes)
are in red, genes with|log2(fold change)| > log2(1.5) but FDR ≥ 0.05 are in green, genes with|log2(fold
change)| ≤ log2(1.5) but FDR < 0.05 are in blue, and the rest are in gray. (D) Heatmap showing
significantly differentially expressed genes which are represented by red dots in (C).
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Figure 4. Enrichment plots showing significantly enriched gene sets (FDR < 0.05) in ranked gene list for
samples treated with USP7797 for 24 h compared to those treated with DMSO vehicle control for 24 h.
Running enrichment scores (ES) and locations of the members of the gene set in the ranked list of genes
are shown for a dozen top representative molecular signatures from the Molecular Signatures Database
(MSigDB) at https://www.gsea-msigdb.org/gsea/msigdb. H: hallmark gene sets are shown in (A,B,E).
C5: ontology gene sets are shown in (C,D,F,G). C2: curated gene sets are shown in (H–L). (A–F) show
negative ES where the leading edge subset appears in the ranked list subsequent to the valley score.
(G–L) show positive ES where the leading edge subset appears in the ranked list prior to the peak score.
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Figure 6. The structure of the OneStopRNAseq workflow and runtime statistics of each job. (A) A directional
acyclic graph (DAG) showing the structure of the workflow. Jobs at lower levels depend on connected
jobs at higher level and the workflow is executed from the top to the bottom following the specified job
dependencies. (B) Creation and finish dates of each job. Blue circles indicate job creation dates and
purple crosses show job finish dates. (C) Runtime of each job in minutes.
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4. Discussion

RNA-seq has become a widely used technology in many fields, including genomics and clinical
diagnostics, but only differential gene-expression analysis has been performed for the majority of
RNA-seq experiments, partially due to the lack of comprehensive RNA-seq analysis pipelines. To fill this
gap, we developed an easy-to-use web application, OneStopRNAseq, which enables the comprehensive
analyses of both private and public RNA-seq data.

Compared to most existing RNA-seq data-analysis pipelines, OneStopRNAseq integrates the
largest number of analysis modules (Supplementary Table S2). Each analysis module leverages
one or more widely accepted tools, chosen on the basis of current best practices for RNA-seq data
analysis [19,20].

For DGE analysis, in addition to output generated from DESeq2 analysis, our pipeline automatically
generates sample-labeled PCA and Poisson distance plots (robust to uncertainty in lowly expression
genes). These two plots are useful for identifying issues with the samples such as library preparation
and visualizing global changes among different samples or experiment conditions. Additional plots
include gene-symbol-annotated volcano plots by EnhancedVolcano (https://github.com/kevinblighe/

EnhancedVolcano) and heatmaps for significant differentially expressed genes by pheatmap (https:
//github.com/raivokolde/pheatmap). Furthermore, our pipeline also outputs results from GSEA
analysis, which takes a rank-ordered gene list without requiring users to select a subset of genes on the
basis of an arbitrary cut-off, and can take differential expression analysis from gene level to gene-set,
pathway, and GO-term level.

The vast majority of genes undergo some level of AS, which contributes to protein diversity,
and they regulate many biological processes [56]. We incorporated rMATS, a popular event-based
AS analysis tool [42]. Alternative-splicing events identified by rMATS include skipped exon (SE),
alternative 5’ splice site (A5SS), alternative 3’ splice site (A3SS), mutually exclusive exons (MXE),
and retained intron (RI). Sometimes, sequencing depth is not enough for reliable event-based DAS
analysis, but enough for DEU analysis; therefore, we also incorporated DEXSeq, a popular tool for
DEU analysis, into our pipeline [57].

Allele-specific gene expression plays an important role in tumor initiation and progression [58].
We incorporated ASEReadCounter from GATK [59] into our pipeline for users to obtain allele-specific
expression quantification results when single nucleotide polymorphism (SNP) information of
individuals or strains (e.g., mouse strains) in the VCF format is provided. The output format is
compatible with Mamba [58], which is a downstream tool for differential ASE analysis.

Besides integrating existing tools, we also achieved some innovations. For instance, we combined
DTE and DGE analyses to improve the robustness and sensitivity of DTE analysis. TE is generally
ignored in most standard RNA-seq analysis pipelines [60], and most genome annotation files do not
have TE entries. We incorporated SalmonTE [44], the fastest tool in DTE analysis, into our analysis
pipeline; however, the SalmonTE analysis pipeline performs DTE on TE expression quantification
tables with DESeq2 [45] without considering mRNA expression. There are two problems with this
approach. First, there are only a few hundred or fewer TEs in most species, and normalization
with such a small number of genes is not robust to variances in TE expression abundance. Second,
DESeq2’s median of ratio normalization assumes that the majority of the genes do not differ in
expression between groups. Analyzing TE expression alone leads to false positives/negatives when
most TEs are up- or downregulated. To overcome this, we combined the TE expression table with
the standard gene-expression table to obtain more robust results. This approach has proven useful
in our own data analysis (unpublished results) and is also implemented in the workflow of TEsmall
(http://hammelllab.labsites.cshl.edu/software/#TEsmall).

Unlike the majority of existing RNA-seq analysis pipelines, OneStopRNAseq can handle
complicated designs with more than two groups. For example, with a randomized complete block
design, users can input the factor of interest as GROUP_LABEL and blocking factors that are not of
research interest under BATCH_LABEL. With the factorial design, users can enter GROUP_LABEL

https://github.com/kevinblighe/EnhancedVolcano
https://github.com/kevinblighe/EnhancedVolcano
https://github.com/raivokolde/pheatmap
https://github.com/raivokolde/pheatmap
http://hammelllab.labsites.cshl.edu/software/#TEsmall
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as the concatenation of labels from different factors. For example, with a two-by-two factorial
design consisting of two treatments (CK and USP7797) and two time points (24 and 48 h) in the
aforementioned case study, users can enter the GROUP_LABEL as CK_24h, CK_48h, USP7797_24h,
and USP7797_48h. Users can specify any comparisons or contrasts, such as the main effect of treatment
and time, any pairwise comparisons, and the differential effect of treatment at different time points.
Detailed instructions on how to specify various types of contrasts for DGE and DAS analysis are
included in the user guide as a supplementary file, and are available under the Help menu of
https://mccb.umassmed.edu/OneStopRNAseq. Under the Help menu, descriptions of the output files
and a template for writing the analysis method using OneStopRNAseq are also provided.

OneStopRNAseq was developed not only for analyzing users’ own data, but it is also convenient for
biologists and bioinformaticians who analyze public datasets. Our pipeline facilitates the comprehensive
and efficient analysis of RNA-seq data. To further increase OneStopRNAseq’s appeal to a broader
user community, we plan to integrate additional applications such as genome-guided transcriptome
assembly to facilitate the assessment of completeness of transcriptome assembly and the identification
of novel isoforms for more accurate DEU and DAS analysis. In addition, we also plan to integrate
ensemble gene set enrichment analysis tools such as EGSEA [61] and alternative DGE analysis tools
such as edgeR [62,63] to facilitate tool comparisons and novel tool development.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/11/10/1165/s1,
Figure S1. Plots showing raw sequencing QC. Data quality of individual RNA-seq files was analyzed by FastQC.
MultiQC was used to generate an all-in-one HTML reports. Shown here are plots from the final HTML report.
(A) Scatterplot showing average GC% and total read numbers. (B) The numbers of unique and duplicate reads.
(C) Per-base mean read quality scores. (D) Per-sequence quality Scores. (E) Per-sequence GC contents. (F) Sequence
duplication rate. (G) Overrepresented sequences. (H) Adaptor contents. Table S1. Comparison of RNA-seq data
analysis workflows. Table S2. Software and parameter settings used by the OneStopRNAseq workflow. Table S3.
Enriched Gene Ontology (GO) terms related to protein ubiquitination among down-regulated genes by USP7797
treatment compared to DMSO vehicle control. Table S4. Summary of differential alternative splicing events
identified by rMATS.
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