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Acute graft-versus-host disease (GVHD) is the leading cause of non-relapse mortality
following allogeneic hematopoietic cell transplantation. The majority of patients non-
responsive to front line treatment with steroids have an estimated overall 2-year survival
rate of only 10%. Bromodomain and extra-terminal domain (BET) proteins influence
inflammatory gene transcription, and therefore represent a potential target to mitigate
inflammation central to acute GVHD pathogenesis. Using potent and selective BET
inhibitors Plexxikon-51107 and -2853 (PLX51107 and PLX2853), we show that BET
inhibition significantly improves survival and reduces disease progression in murine
models of acute GVHD without sacrificing the beneficial graft-versus-leukemia
response. BET inhibition reduces T cell alloreactive proliferation, decreases
inflammatory cytokine production, and impairs dendritic cell maturation both in vitro
and in vivo. RNA sequencing studies in human T cells revealed that BET inhibition impacts
inflammatory IL-17 and IL-12 gene expression signatures, and Chromatin
Immunoprecipitation (ChIP)-sequencing revealed that BRD4 binds directly to the IL-23R
gene locus. BET inhibition results in decreased IL-23R expression and function as
demonstrated by decreased phosphorylation of STAT3 in response to IL-23 stimulation
in human T cells in vitro as well as in mouse donor T cells in vivo. Furthermore, PLX2853
significantly reduced IL-23R+ and pathogenic CD4+ IFNg+ IL-17+ double positive T cell
infiltration in gastrointestinal tissues in an acute GVHD murine model. Our findings identify
a role for BET proteins in regulating the IL-23R/STAT3/IL-17 pathway. Based on our
preclinical data presented here, PLX51107 will enter clinical trial for refractory acute GVHD
in a Phase 1 safety, biological efficacy trial.
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INTRODUCTION

Acute graft-versus-host disease (GVHD) is a T cell mediated
disorder commonly associated with allogeneic hematopoietic cell
transplantation (HCT) leading to transplant-related mortality.
Acute GVHD occurs when donor T cells recognize host minor
and major histocompatibility complex (MHC) antigens as non-
self and mount an inflammatory immune response involving
multiple steps: immune response priming by conditioning
regimen-induced tissue damage, donor T cell activation, T cell
expansion and differentiation, T cell migration to target tissues,
and destruction of target tissues by inflammatory cytokines and
direct cytotoxicity (1–6). Tissue damage associated with pre-
transplant conditioning chemotherapy or radiation induces the
secretion of a multitude of cytokines including tumor necrosis
factor (TNF), interleukin 1 (IL-1), IL-12, IL-23 and IL-6 which
leads to the activation of host antigen presenting cells (APC).
APC subsequently activate donor T cells from the graft, further
propagating the release of inflammatory cytokines such as IL-17,
IFN-g, and TNF that ultimately results in target tissue
destruction (4). Th17-associated cytokines such as IL-17 and
IL-23 are known to be increased in GVHD, highlighting the
importance of this T cell subset in the pathogenesis of the
disorder (7–11). Additionally, loss of host gastrointestinal (GI)
tissue integrity is of particular importance as GI damage permits
the translocation of microbial products which trigger further
host APC activation, resulting in a vicious cycle of rampant T cell
activation and subsequent tissue destruction (2, 12–15).

Bromodomain and extra-terminal domain (BET) proteins,
namely BRD2, BRD3, BRD4, and BRDT, are a conserved family
of epigenetic regulators that, via their two bromodomains BD1
and BD2, regulate gene transcription by binding to acetylated
lysine residues on histones. BET proteins have been shown to
bind specifically to genes associated with super-enhancers
enriched with acetyl-histone H3K27 (H3K27Ac) (16, 17).
Aberrant expression of BET proteins has been shown to
contribute to carcinogenesis by mediating hyperacetylation on
regions of chromatin that contain proliferative genes (17). BRD4
in particular serves as an epigenetic reader responsible for linking
active chromatin marks to transcriptional elongation by the
activation of RNA polymerase II (17).

Pharmacological inhibition of the BET family of proteins is a
promising targeted treatment for cancers including acute
leukemia (18, 19), myelodysplastic syndrome (NCT04022785),
progressive lymphoma (NCT01949883, NCT03936465,
NCT03068351, NCT04022785, NCT04116359), NUT cancer
(NCT04116359), prostate cancer, CLL (20), and non-small cell
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lung cancer (21, 22). BET inhibition also potently suppresses the
Th17-mediated inflammatory response, achieved by impairment
of T cell differentiation and proliferation (23–25). Inhibition of
BET proteins has been shown to modulate the inflammatory
response of both dendritic cells and T cells potentially due to the
disruption of the interaction between BRD4 and acetyl-310 RelA
of NF-kB (26). BET inhibition in an allogeneic bone marrow
transplantation mouse model has been shown to reduce the
severity of GVHD and improve overall survival (26, 27);
however, clinical translation of these agents is severely limited
by lack of single agent efficacy in conjunction with broad target
specificity and/or short half-life (26–30).

Therefore, we employed the use of the structurally distinct
BET inhibitors, Plexxikon-51107 and -2853 (PLX51107 and
PLX2853), that were modified from in-house screening hits
with weak affinity and optimized to generate compounds with
high affinity and selectivity and are structurally distinct from
other identified and reported BET family inhibitors. Specifically,
PLX51107 and PLX2853 exhibit unique binding by a novel 7-
azaindole scaffold as opposed to the more common
benzodiazepine scaffold of previous BET inhibitors (20). These
inhibitors bind to acetylated lysine motifs in the bromodomains
of BRD4 preventing the binding of BRD4 to its target acetylated
lysines on histones and other proteins. PLX51107 and PLX2853
exhibited a unique binding mode, differentiated pharmacokinetic
(PK) profile, and improved tolerability. In a substrate binding
assay using engineered BRD2 and BRD4 proteins that contain
both bromodomains, PLX2853 was shown to be 7-9-fold more
potent than PLX51107 (Table 1). The binding of either
PLX51107 or PLX2853 to BRD4 results in inhibition of RelA
binding and the downstream transcriptional activation of
inflammatory response genes (20, 31, 32).

Both PLX51107 and PLX2853 compounds possess promising
pharmacokinetic profiles in rodents and humans: high peak
plasma compound concentrations and short terminal half-life.
Here, we examine the therapeutic potential of this novel class of
BET inhibitor for treating acute GVHD, anticipating efficient
translation into clinical studies. Overall, our results show that
BET inhibition by PLX51107 and PLX2853 represents a
promising treatment strategy for acute GVHD.
MATERIALS AND METHODS

Mice
C57BL/6 (B6, H2b), B6.SJL-Ptprca Pepc/BoyJ (CD45.1 B6),
B6D2F1 (F1, H2b/d), C3.SW-H2b/SnJ (C3.SW, H2b), and
TABLE 1 | IC50 values for PLX51107 and PLX2853 against BET proteins.

BET Proteins PLX51107 PLX2853

IC50 (mM)a CI95 (mM)b IC50 (mM)a CI95 (mM)b

BRD2-BD12 0.052 0.046-0.059 0.0073 0.0035-0.015
BRD4-BD12 0.023 0.021-0.026 0.0043 0.0026-0.007
October 2021 | Volume 11 |
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BALB/c (H2d) mice were purchased from Jackson
ImmunoResearch Laboratories (Bar Harbor, ME). For
transplant experiments, recipient mice were between 12 and 16
weeks of age. For all other experiments, mice were between 8-10
weeks of age. All animal studies were conducted in accordance
with the rules and regulations of the Institutional Animal Care
and Use Committee at OSU.

Acute GVHD Murine Models
Mice were transplanted under standard protocols approved by
the University Committee on Use and Care of Laboratory
Animals at OSU. Only age- and sex-matched mice were used
for transplant experiments. Three separate models were used for
in-vivo acute GVHD studies. In the first model, B6D2F1 mice
were irradiated with 1200 cGy administered in 2 fractions (to
minimize toxicity) one day before transplant. T cell depleted
bone marrow (TCD-BM) cells [10x10 [6]] plus [15x10 [6]] total
splenocytes from CD45.1 B6 donors were administered on the
day of transplant. T cell depletion from BM cells was carried out
by CD90.2 magnetic bead separation (Miltenyi Biotec). In the
second model of minor histocompatibility antigen (miHA)
mismatched experiments, B6 recipient mice were irradiated
with 1000 cGy in a single dose on the day of transplant.
C3.SW donor CD8 T cells [1x10 [6]] and TCD-BM cells
[10x10 [6]] were administered. In the third model BALB/c
recipients underwent, recipients underwent 700 cGy irradiation
fractionated into two doses and received [0.7x10 [6]] B6 T cells
plus [10x10 [6]] TCD-BM cells on the following day. All cell
infusions were administered via tail vein injection. Recipients of
allogeneic splenocytes or T cells were treated with vehicle, BET
inhibitor PLX51107 (10 mg/kg) or PLX2853 (3mg/kg),
administered by oral gavage three times weekly starting day +1
or day +7 post-transplant until the end of the study. For the B6
into BALB/c model alone, treatment was initiated at day +10 due
to the inherent fragility of this model leading to early deaths in
the first week post-transplant; only those mice surviving past day
10 were used for the study.

PLX51107 and PLX2853
BET inhibitors PLX51107 and PLX2853 were developed by
Plexxikon. The compounds were dissolved in N-Methyl-2-
pyrrolidone (NMP) and administered into a final formulation of
10% NMP plus diluent (40% PEG400, 5% TPGS, 5% Poloxamer
407 and 50%Water). Mice received 10 mg/kg PLX51107 or 3 mg/
kg PLX2853 three times per week via oral gavage beginning day +1
or day +7 post-transplant until the end of the study.

Clinical and Histologic Assessment of
Acute GVHD
Recipient mice were weighed 2-4 times a week and monitored
daily for clinical signs of acute GVHD and survival. A scoring
method adapted and modified from Cooke et al. (33) was used to
assess clinical changes associated with aGVHD. Briefly, this
scoring system incorporates 5 clinical parameters: weight loss,
posture (hunching), activity, fur texture, and skin integrity.
Individual mice were ear tagged and graded (in a scale from 0
to 8) twice a week. Mice who reached an acute GVHD score of
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more than or equal to 7 were very sick and were euthanized and
their tissues harvested. GVHD was also assessed by detailed
histopathology analysis of H&E stained liver and gut tissues
using a previously reported scoring system with a range of 0
(absence of signs of GVHD) to 4 (maximal GVHD damage) (34).
A separate cohort of mice were euthanized around day 25 (± 3
days) post-transplant and used for histopathological assessment
of target tissues.

Flow Cytometry Analysis
Around day 28 post-BMT, cohorts of mice were euthanized and
splenocytes and small intestine were harvested for flow
cytometric analysis. Intraepithelial lymphocytes (IELs) were
isolated from lamina propria and digested into a single cell
suspension using a commercial mouse Lamina Propria Tissue
Dissociation Kit (Miltenyi Biotec). To select only the donor T
cells, a specific gating strategy was used (Figure S7). A complete
list of antibodies used is listed in Table S1. For cytokine
evaluation, splenocytes and IELs were incubated for 5 hours
with eBioscience Cell Stimulation Cocktail (plus protein
transport inhibitors, Thermo Fisher Scientific) for T cell
stimulation and protein transport inhibition. Cells were then
stained with surface antibodies, permeabilized, fixed, stained
with intracellular antibodies and analyzed within 24 hours.
Analysis was performed with a FACS LSRFortessa flow
cytometer; FACSDiva software (Becton Dickinson), and data
analysis was performed using FlowJo (Tree Star).

Immunohistochemistry
Tissues were fixed in 10% formalin overnight, paraffin embedded,
and sectioned. Deparaffinized sections were subjected to antigen
retrieval using Borg Decloaker RTU solution (Biocare Medical) in
a pressure cooker (Instant Pot) for 20 minutes. Sections were
incubated with rabbit anti-Ki-67 (D3B5) primary antibody (1:400,
CST 12202S) overnight at 4°C. Secondary antibody used was
biotin-conjugated donkey anti-rabbit (Jackson ImmunoResearch),
followed by detection using the Vectastain Elite ABC
immunoperoxidase detection kit (Vector Labs) and Dako Liquid
DAB+ Substrate (Dako). Sections were counterstained with
hematoxylin and mounted with Cytoseal XYL (Thermo) for
visualization. Antibody dilutions were made in Common
Antibody Diluent (BioGenex). Number of crypts with >10 Ki-67
positive cells were averaged across 0.5 cm of tissue.

In Situ Hybridization
Single-molecule in situ hybridization was performed using
RNAscope 2.5 HD Assay-Red (Advanced Cell Diagnostics)
according to manufacturer protocol with the Mm-Lgr5 probe.
Number of cells per crypt with Lgr5 positive staining were
averaged across 50 crypts.

GVL Experiments
B6D2F1 recipients were lethally irradiated (1200 cGy) in two
doses to minimize toxicity on day -1. Firefly luciferase
transduced P815 mastocytoma cells (2,000) were injected
intravenously into F1 recipients on day 0 along with TCD-BM
[10x10 [6]] cells. B6 donor splenocytes [15 x 10 [6]] cells were
October 2021 | Volume 11 | Article 760789
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administered intravenously on day +1 to treatment groups.
Treatment groups included vehicle and BET inhibitor
PLX2853 3mg/kg, administered by oral gavage three times
weekly starting day +2 post-transplant. TCD-BM and P815
cells (leukemia alone) served as the control group. P815-
induced leukemic death was defined by the occurrence of
either macroscopic tumor nodules in liver and/or spleen or
hind-leg paralysis. GVHD death was defined by the absence of
leukemia and the presence of clinical and histopathological signs
of GVHD.
In Vivo Imaging
Xenogen IVIS imaging system (Caliper Life Sciences) was used
for live animal imaging. Mice were anesthetized using 1.5%
isofluorane (Piramal Healthcare). XenoLight RediJect D-
Luciferin Ultra Bioluminescent Substrate (150 mg/kg body
weight; 30 mg/mL in PBS; Perkin Elmer) was injected
intraperitoneally and IVIS imaging was performed 7-10
minutes after substrate injection. Whole body bioluminescent
signal intensity was determined using IVIS Living Image
software v4.3.1 (Caliper Life Sciences), and pseudocolor images
overlaid on conventional photographs are shown. Data were
analyzed and presented as photon counts per area.
STAT3 Assays
PBMCs [1x10 (6) cells/mL] were cultured in RPMI-1640
containing 20% FBS and 1% PSG with CD3/CD28 DynaBeads
for 48 hrs in the presence or absence of PLX51107 (250nM) or
PLX2853 (10nM). On day 3, CD3/CD28 DynaBeads were
removed, cells pelleted by centrifugation, resuspended and
incubated in RPMI-1640 containing 1% FBS for 4-hour
starvation at 37°C. Cells were then stimulated for 15 min with
IL-23 (10 ng/mL, Sigma Aldrich) for STAT3 phosphorylation.
For baseline level assessment, cells were left unstimulated for
15 min at 37°C. Cells were subsequently fixed with
paraformaldehyde (1.5%) for 15 min and stained for the cell
surface markers CD3 and CD4. After washing, cells were
permeabilized with 90% ice-cold methanol for 30 min in 4°C
and stained for the total and phosphorylated STAT3. Cells were
analyzed on the LSRII (BD Biosciences) within 24 hours. Data
analysis was performed using Flow Jo software (Tree Star).
Degranulation Assay
CD8T cell degranulationwasmeasured by intracellular production
of IFN-g and CD107a in response to ex vivo PMA/ionomycin
stimulation. Splenocytes harvested from vehicle and PLX2853
treated mice (n=6 each) were stimulated with eBioscience Cell
Stimulation Cocktail (plus protein transport inhibitors, Thermo
Fisher Scientific), stained for CD107a, and then incubated for 5
hours. After stimulation, the cells were stained with CD45.1, CD3
and CD8 antibodies, followed by permeabilization and staining for
intracellular IFN-g. Cells were analyzed by flow cytometry. CD45.1
donor CTL were gated on for analysis.
Frontiers in Oncology | www.frontiersin.org 4
mRNA-seq
Human T cells were isolated from healthy donor PBMCs (n=4
donors) by negative selection. T cells were treated with vehicle
(DMSO) or PLX51107 (100 nM) for 48hrs and RNA was isolated
using Trizol reagent (Invitrogen, Carlsbad, CA) and treated with
DNase (Qiagen, Hilden, Germany). RNA quality was verified
using the Agilent 2100 Bioanalyzer (Agilent Technologies, Santa
Clara, CA) and the RNA integrity number values were greater
than 7 for all samples. Sequencing libraries were generated with
polyA+ RNA using the TruSeq RNA sample prep kit (Illumina,
San Diego, CA). Libraries underwent paired end 50bp
sequencing using the Illumina HiSeq2500 sequencer to a depth
of 17 – 20 million passed filter clusters per sample. RNA-Seq data
was analyzed using Basepair software (https://www.basepairtech.
com/) with a pipeline that included the following steps. Reads
were aligned to the transcriptome derived from UCSC genome
assembly (((hg19))) using STAR (35) with default parameters.
Read counts for each transcript was measured using
featureCounts (36). Differentially expressed genes were
determined using DESeq2 (37) and a cut-off of 0.05 on
adjusted p-value (corrected for multiple hypotheses testing)
was used for creating lists and heatmaps, unless otherwise
stated. GSEA was performed on normalized gene expression
counts, using gene permutations for calculating p-value. The
data supporting the results of this article are available in the GEO
repository (accession ID: GSE183884). (https://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE183884).
ChIP-Sequencing
Healthy donor (HD) T cells were stimulated with CD3/CD28 ±
PLX2853 (10nM) for 24 hours. Cells were processed for
chromatin immunoprecipitation (ChIP) per Active Motif kit
instructions (Active Motif). ChIP sequencing (ChIP-seq) was
performed using FactorPath ChIP-Seq technology by Active
Motif. The data supporting the results of this article are
available in the GEO repository (accession ID: GSE183883).
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE183883).
Chromatin Immunoprecipitation (ChIP) and
Quantitative RT-PCR (qRT-PCR)
Chromatin immunoprecipitation was performed using
SimpleChip enzymatic chromatin IP kit (Cell Signaling
Technology) according to manufacturer’s protocol. Briefly,
cells were crosslinked by incubation with 1% formaldehyde
(Sigma Aldrich) at 37°C for 15 minutes. The reaction was
stopped by addition of glycine (0.125 M final concentration;
Sigma Aldrich). Cells were washed twice with ice-cold PBS
containing 1X protease inhibitors cocktail (Cell Signaling
Technology). Nuclei were isolated in 1X buffer B. The nuclei
were collected and resuspended in 1X ChIP buffer then subjected
to sonication using a Cole Palmer Ultrasonic homogenizer at
70% amplitude for 1 min with 1 min incubation at ice for seven
cycles. The released chromatin was pelleted by centrifugation at
10,000 g for 15 minutes. Eighty to 100 mg of chromatin were pre-
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cleared with ChIP grade protein G magnetic beads (Cell
Signaling Technology) in 1X ChIP buffer, for 3 hours at 4°C.
Magnetic beads were pelleted using magnetic stand and the
supernatant was incubated with ChIP grade BRD4 antibody
(Active Motif) at 4°C overnight with rotation. The chromatin-
antibody complexes were then bound to ChIP grade protein G
magnetic beads for 2 hours at 4°C with rotation followed by
pelleting of chromatin-antibody-magnetic beads complex using
magnetic stand. The immune complexes were eluted with 1X
ChIP elution buffer at 65°C for 30 minutes followed by reversal of
cross-links at 65°C overnight. Eluted complexes were treated
with RNAse A at 37°C for 2 hours and subsequently by
Proteinase K at 55°C for 2 hours followed by DNA purification
using DNA purification columns (Cell Signaling Technology).
The purified DNA was eluted in 25 mL 1X elution buffer and 2 mL
were used in qRT-PCR. Quantitative-PCR was carried out on a
CFX96 Real-Time PCR System (Bio-Rad) using SYBR green PCR
master mix (Applied Biosystems). The following primers were
used for ChIP quantitative PCR: IL23R forward primer: TCACTGC
AACCTCTGCTT, Reverse primer: GTGCCCGATGCCTGTAAT.
Statistical Analysis
Survival data were analyzed using Kaplan-Meier and log-rank test
methods. Differences between continuous variables at a single time
point were analyzed using two-sided t tests. One-way analysis of
variance (ANOVA) with Dunnet post-hoc test was used for
comparisons >2 groups. For estimating statistical significance in
clinical scores using multiple t-tests over time, P values were
adjusted using the two-stage linear step-up procedure of
Benjamini, Krieger, and Yekutieli (38). Data represent mean ± SD.
All analyses were performed using GraphPad Prism 8.0. *p<0.05,
**p<0.01, ***p<0.001, NS non-significant.

Additional information can be found in SupplementaryMethods.
RESULTS

BET Inhibitor PLX51107 Significantly
Improves Survival in Multiple Mouse
Models of Acute GVHD
Small molecule BET inhibitors PLX51107 and PLX2853 both
efficiently suppressed mouse and human T cell proliferation
(Figures S1A–D), inflammatory cytokine IFN-g, IL-6, and TNF-
a secretion (Figures S1E–G) as well as murine dendritic cell
maturation (Figures S2A–C) in vitro. We then asked whether
administration of PLX51107 to mice after allogeneic bone
marrow transplantation could improve overall survival and
reduce clinical severity of acute GVHD. Lethally irradiated
B6D2F1 mice received allogenic splenocytes and T cell depleted
bone-marrow cells (TCD-BM) from CD45.1 B6 mice. Recipients
were treated with PLX51107 (10 mg/kg) or vehicle, and a cohort of
B6D2F1 mice receiving CD45.1 B6 TCD-BM alone were used as
controls. Mice treated with BET inhibitor PLX51107 exhibited
significantly improved survival in both starting day +1 and day
+7 dosing cohorts compared to mice receiving vehicle treatment
Frontiers in Oncology | www.frontiersin.org 5
(Figure 1A). In addition, we observed significantly reduced acute
GVHD clinical scores in these mice as compared to vehicle treated
recipients (Figure 1B). The BRD4 protein functions in opposition
to hexamethylene bisacetamide inducible protein 1 (HEXIM1) by
recruiting positive transcription elongation factor b (P-TEFb) to
nearby promoters in order to activate transcription. HEXIM1 traps
P-TEFb inan inactive complex therebypreventing this process (39).
Due to the inverse relationship between these two proteins,
upregulation of Hexim1 gene transcription serves as a robust
pharmacodynamic marker for BRD4 inhibition. As expected, we
observed a significant upregulation of Hexim1 gene expression in
mice treated with PLX51107 indicating effective target engagement
(Figure1C).Wealso testedPLX51107 inaB6 intoBALB/cmodelof
acute GVHD. Lethally irradiated BALB/c mice received TCD-BM
combined with T cells from B6 donors, followed by treatment with
vehicle or PLX51107. PLX51107-treated recipients exhibited
significantly improved survival as well as lower acute GVHD
clinical scores (Figures 1D, E). We also investigated the effect of
PLX51107 in a murine minor histocompatibility antigen
mismatched acute GVHD model. Lethally irradiated B6 mice
received C3.SW TCD-BM and CD8 T cells isolated from
splenocytes and lymph nodes. Recipients of CD8 T cells were
treated with vehicle or PLX51107 beginning at day +7 post-
transplant. PLX51107-treated cohorts exhibited significantly
improved survival and acute GVHD clinical scores compared to
vehicle recipients (Figures 1F, G). Collectively, our data show that
PLX51107 mitigates acute GVHD consistently across models with
differing degrees of donor-recipient compatibility.
Second Generation BET Inhibitor PLX2853
Improves Survival in Mouse Model of
Acute GVHD
Detailed structural analyses have now determined that both
bromodomains of BET proteins (BD1 and BD2) are cooperatively
involved in the recognition of acetyl lysine epitopes, the interaction
of inhibitors with either domain can be fine-tuned to bring about
changes in both pharmacological activity and tolerability (21).
Previous generations of BET inhibitors have exhibited a pan
activity profile coupled with a long terminal half-life. This has
resulted in general, poor clinical activity due to overt toxicity. The
unique chemotype and short terminal half-life of PLX51107/
PLX2853 are associated with an improved tolerability profile and
a more attractive option to explore clinically.

PLX2853 is a more potent analog of PLX51107 that exhibits
low nM growth inhibition across panels of cancer cell lines
spanning both leukemia and lymphoma histologies (Table 2).
PLX2853 is currently being evaluated clinically in Phase 1 and 2
studies spanning AML/MDS, gynecologic cancer, prostate cancer
and other solid tumor indications (NCT03787498, NCT03297424,
NCT04493619 and NCT04556617). We tested the effects of this
inhibitor in murine acute GVHD using the previously described
B6 into B6D2F1 model, wherein recipients of allogeneic
splenocytes were treated with PLX2853 (3 mg/kg) or vehicle by
oral gavage three times per week starting on day +1 post-
transplant. We observed significant prolongation of survival as
October 2021 | Volume 11 | Article 760789
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well as reduced acute GVHD clinical scores and reduced liver and
GI histopathology scores in mice treated with PLX2853
(Figures 2A–C). A previous study investigating BRD4 inhibition
reported that short hairpin RNA-mediated BRD4 silencing
disrupted intestinal cell proliferation as well as altered the
presence of Lgr5+ intestinal stem cells (40) while a later study
showed that pharmacological BET inhibition did not alter this cell
population (41). Given these conflicting reports, and the
established primacy of the intestinal turnover in acute GVHD
pathogenesis (13, 14, 42, 43), we aimed to determine the impact of
PLX2853 BET inhibition on Lgr5+ intestinal stem cells. Small
intestine sections from mice euthanized around day 25 post-
transplant were analyzed for Ki67+ cells by immuno
histochemistry as a marker of proliferation (Figure 2D) and for
number of Lgr5+ stem cells per crypt (Figures 2E, F). We
observed no difference between vehicle and PLX2853 cohorts in
the number of proliferating Ki67+ crypts or the number of Lgr5+
Frontiers in Oncology | www.frontiersin.org 6
intestinal stem cells per crypt, indicating that BET inhibition does
not adversely impact intestinal stem cell recovery or proliferation
(Figures 2D–F).
PLX2853 Reduces T Cell and Dendritic
Cell Inflammatory Response In Vivo
We next sought to further characterize the impact of BET
inhibition on T cell and dendritic cell (DC) function in vivo,
using the B6 into B6D2F1 model as described previously.
Splenocytes from mice receiving allogeneic B6 splenocytes were
evaluated by flow cytometry to assess the effect of PLX2853 on T
cell proliferation and inflammatory response. We observed a
significant reduction in percent donor CD45.1 T cells, donor
CD4 and CD8 T cells expressing proliferation marker Ki67, and
donor CD4+ T cells secreting cytokines IFN-g and IL-17 in the
splenocytesofmice thatwere treatedwithPLX2853 (Figures3A–D).
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Interestingly, we did not detect a difference in percent donor CD4+
CD25+ Foxp3+ Treg cells, suggesting that BET inhibition preserves
immune tolerance (Figure 3E and Figure S3). Since our in vitro
assays elucidated a role for BET inhibition in DC activation and
maturation, we next asked if this inhibitory effect on DCs could be
observed in vivo.We observed a significant reduction in percent total
CD11c DCs in splenocytes from mice treated with PLX2853
(Figure 3F) accompanied by significantly reduced percentages of
CD80+, CD86+, and CD86+ MHCII+ double positive DCs
(Figures 3G–I), but not CD40 (Figure 3J) in splenic DCs. In all,
these data bolster our in vitro findings and suggest that BET
inhibition can have a dual effect in ameliorating acute GVHD
in vivo by dampening both DC maturation and alloreactive T cell
immune response.

PLX2853 Retains the Beneficial Graft-
Versus-Leukemia (GVL) Effect
It is critical for an acute GVHD therapy to maintain the GVL
response since the primary goal of allogeneic HCT is the
induction of a donor anti-tumor response to eliminate residual
malignant cells in the recipient. Therefore, we investigated the
effect of BET inhibition on GVL using a luciferase-transduced
GFP+ murine mastocytoma P815 cell line in the B6 into B6D2F1
model. Lethally irradiated B6D2F1 mice received P815 cells
along with TCD-BM from B6 mice. Twenty-four hours later, a
cohort of mice was injected with allogeneic B6 splenocytes.
Recipients of allogeneic splenocytes were then treated with
vehicle or PLX2853, starting day +2 post-transplant. Recipients
of allogenic splenocytes demonstrated significantly improved
survival when compared with mice receiving P815 + TCD-BM
alone (Figure 4A), regardless of PLX2853 or vehicle treatment.
In addition, mice receiving PLX2853 showed reduced
luminescence compared to P815+ TCD-BM alone mice with
no difference in luminescence when compared with vehicle
treated mice (Figures 4B, C). Flow cytometric analysis of GFP+
P815 tumor burden in splenocytes of recipient mice confirmed
Frontiers in Oncology | www.frontiersin.org 7
that cause of death in mice receiving allogeneic B6 splenocytes
(vehicle and PLX2853 cohorts) was not leukemia/tumor
(Figure 4D). To evaluate whether PLX2853 impacts cytotoxic
T lymphocyte (CTL) function of donor CD8+ T cells, splenocytes
from vehicle and PLX2853 treated mice were isolated, and IFN-g
production and degranulation was analyzed. Donor CD45.1+
CD8+ T cells from mice treated with PLX2853 and vehicle
showed comparable expression of IFNg and CD107a suggesting
that BET inhibition does not disrupt the CTL function that is
critical for GVL effect (Figures 4E, F).
BET Inhibition Significantly Impacts
Inflammation Associated Gene
Expression Signatures
To further characterize the effect of BET inhibition on T cells, we
compared gene expression profiles of human T cells stimulated by
CD3/CD28 in the presence or absence of PLX51107 using RNA-
sequencing. We found multiple inflammatory Th1/Th17-
associated genes such as IL-2, IL-23R, IL-6, IL-17F, IFNg,
IL12Rb2, CD40L downregulated upon treatment with PLX51107
(Figures 5A, B). Correspondingly, gene set enrichment analysis
(GSEA) highlighted the downregulation of genes associated with
the IL-12 and IL-17 signaling pathways (Figure 5C), validating
earlier studies that showed a role for BET proteins and Th1/Th17
pathways (23, 44–47). Reduced IL-2 expression deviates from a
previous BET inhibitor study in which the authors observed an
increase in IL-2 expression uponBET inhibition (26). Interestingly,
STAT1 expression was significantly higher in the PLX51107
samples compared with DMSO treatment (Figures 5A, B). Using
T cells treated with the second-generation BET inhibitor PLX2853,
we further validated the results by performing quantitative real-
time PCR analysis of a smaller subset of genes. Again, we observed
significant reductions in gene expression of IL-2, IFN-g, IL-17F, IL-
23R, and CD40L in cells treated with PLX2853, as well as increased
expression of STAT1 (Figure 5D).
TABLE 2 | IC50 values for the growth inhibition of hematologic malignant cells by PLX51107 and PLX2853.

Cell Line Histologic Type PLX51107 PLX2853

IC50 (mM)a CI95 (mM)b IC50 (mM)a CI95 (mM)b

DOHH2 Lymphoma, diffuse large B-cell 0.28 0.24-0.33 0.017 0.016, 0.018
HEL 92.1.7 Leukemia, acute erythroid 0.36 0.33, 0.39 0.042 0.034-0.054
Kasumi-1 Leukemia, acute myeloblastic 0.074 0.067-0.083 0.0043 0.0037-0.0051
MEC-1 Leukemia, chronic B cell 0.18 0.14-0.23 0.023 0.020, 0.026
MEC-2 Leukemia, chronic B cell 0.72 0.58-0.89 0.11 0.089, 0.13
MM.1S Multiple myeloma 0.22 0.17-0.29 0.016 0.011-0.025
MUTZ-8 Leukemia, acute myeloid 1.4 1.3-1.6 0.11 0.11, 0.11
MV-4-11 Leukemia, acute myeloid 0.062 0.056-0.069 0.0041 0.0035-0.0048
NALM-6 Leukemia, acute lymphoblastic 0.14 0.14, 0.14 0.0096 0.0061-0.015
OCI-AML-2 Leukemia, acute myeloid 0.13 0.12-0.15 0.011 0.010, 0.011
OCI-AML-3 Leukemia, acute myeloid 0.071 0.068, 0.074 0.0049 0.004-0.0061
OCI-LY3 Lymphoma, diffuse large B-cell 0.4 0.36-0.46 0.026 0.017-0.041
P12-ICHIKAWA Leukemia, precursor T-cell acute lymphoblastic 0.32 0.27-0.38 0.018 0.017, 0.020
RAMOS (RA1) Lymphoma, Burkitt 0.64 0.56-0.73 0.037 0.036, 0.038
SET-2 Leukemia, acute megakaryoblastic 0.15 0.13-0.17 0.011 0.011, 0.012
YNH-1 Leukemia, acute myeloid 0.14 0.12-0.15 0.011 0.010,0.012
Octobe
r 2021 | Volume 11 |
aGeometric mean of the IC50.
b95% Confidence interval for geometric mean if n ≥ 3 or individual IC50 if n<3.
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BET Inhibition Modulates the IL-23/STAT3
Immune Axis and Inhibits T Cell Infiltration
Into the GI Tract
To investigate the molecular mechanisms that gave rise to the
transcriptional signatures associated with PLX2853 treated T cells,
we performed Chromatin Immunoprecipitation (ChIP)-sequencing
onCD3/CD28 stimulated humanT cells in the presence or absence of
PLX2853. We evaluated BRD4 binding, RNA polymerase II (POL II)
occupancy and H3K27Ac (BRD4-associated histone mark) density.
We observed a reduction in BRD4 binding to the IL-23R gene, with a
corresponding decrease in H3K27ac as well as RNA polymerase II
occupancy (Figure 6A). Using ChIP-PCR, we validated the reduced
bindingofBRD4 to the IL-23Rgene inPLX2853 treatedhumanTcells
(Figure 6B). This supports our RNA-seq data in which IL-23R gene
expression is downregulated in T cells upon treatment with either
pharmacological inhibitors PLX51107/PLX2853 and small interfering
RNA(siRNA)knockdownofBRD4(FigureS4). Inorder todetermine
whether the reduction in IL-23R expression has functional
consequences in downstream signaling events, we evaluated
phosphorylation of STAT3 (p-STAT3) in response to exogenous IL-
23 stimulation in human T cells in the presence of PLX2853. Flow
cytometric analysis revealed a significant decrease of STAT3
phosphorylation in the presence of BET inhibitors PLX51107
Frontiers in Oncology | www.frontiersin.org 8
(Figure S5) or PLX2853 without significant changes in total STAT3
expression (Figures 6C,D).Complementary to our in vitrofindings in
human T cells, we show that PLX2853 administration in vivo resulted
insignificantdownregulationof IL-23Rexpression(FiguresS6A,B) as
well as reduced STAT3 phosphorylation (but not total STAT3) in
response to IL-23 stimulation (Figures S6C, D). IL-23 is known to
drive intestinal T cell proliferation and promote the accumulation of
Th17 cells in the intestines (48). Therefore, we sought to determine if
BET inhibitionmodulated IL-23R expression and Th17 infiltration in
the GI tract of allogeneically transplanted B6D2F1 recipients in vivo.
Weobserved a significant reduction in thepercentage of IL-23R+CD4
+ T cells in colonic intraepithelial lymphocytes (IELs) of PLX2853-
treated mice in comparison to vehicle (Figures 6E, F). In addition, an
IFNg+ IL-17+ double positive CD4+ T cell population known to arise
in response to IL-23R signaling (48) was also decreased in the colonic
IELs ofmice treated with PLX2853 (Figures 6G,H). Altogether, these
data support our assertion that BRD4 regulates Th17 pathogenicity
through IL-23R and the IL-23/STAT3 pathway.

DISCUSSION

Herein, we demonstrate that BET inhibition with PLX51107/2853
dampens the T cell inflammatory response following allogeneic
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BMT via modulation of IL-23R/STAT3 pathway, significantly
improving survival in animal models without evidence of
impaired GVL or Treg function. We show that BET inhibition
with PLX51107/2853 decreases the binding of BRD4 as well as
H3K27ac and RNA Pol II occupancy to the IL-23R gene in
human T cells with concomitant decrease in IL-23R expression
and signaling in both human T cells in vitro and murine T cells
in vivo. These findings suggest that there exists a direct interaction
between BRD4 and the IL-23R locus which is disrupted by
PLX51107/2853, resulting in the decreased inflammatory
response. Our studies confirm previous findings wherein
allogeneic donor T cell proliferation, inflammatory cytokine
secretion and DC maturation (23, 26, 27, 49, 50) are suppressed
upon BET inhibition, thereby solidifying a therapeutic role for
BET inhibitors such as PLX51107 and PLX2853 in acute GVHD.

In recent years, the Th17 subset has been identified as critical
in the pathogenesis of acute GVHD along with the Th1
population (10). Additionally, Th17 pathogenicity has been
linked to STAT3 signaling through IL23R, prompting
investigation into the role of IL-23R in acute GVHD (12, 51, 52).
Suppression of Th17 differentiation via inhibition of STAT3
pathway has been shown to reduce IL-17 and RORgt expression
in murine experimental autoimmune myocarditis while
Frontiers in Oncology | www.frontiersin.org 9
simultaneously increasing the expression of FOXP3 (53).
Previous work has shown that IL-23R signaling is required by
Th17 cells in order to become pathogenic (54, 55); however, the
effect of BET proteins on the IL-17/IL-23 immune axis especially
in the context of acute GVHD remained unexplored. The GI
tract is a key target organ of acute GVHD, and tissue damage
mediated by T cells in this organ is associated with acute GVHD-
related mortality (2, 15, 56). Direct signaling through the IL-23R
in T cells has been shown to drive their proliferation to promote
accumulation of intestinal Th17 cells (48) as well as other Th1
pathogenic populations (57). Our studies have revealed a direct
role for BET proteins regulating the pathogenic IL-23R/STAT3/
IL-17 axis. Our in vitro and in vivo experiments have
demonstrated that BET inhibition using PLX51107/2853
downregulates IL-23R expression and function as evidenced by
decreased phosphorylation of STAT3 in response to IL-23
stimulation in both human (in vitro) and mouse T cells
(in vivo). We also observed a reduction of a distinct population
of CD4+ IFN-g+ IL-17+ T cells in colonic IELs upon BET
inhibition, a pathogenic population shown to emerge in
response to IL-23 signaling (48). Importantly, our ChIP-seq
analysis shows a clear reduction of BRD4 binding to the IL-
23R gene upon treatment with PLX2853, illustrating the direct
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effect of BRD4 on IL-23R. To our knowledge, this is the first time
it has been shown that BRD4 directly acts upon the IL-23R gene
to modulate the pathogenic Th17 response.

Our observations of reduced production of pro-inflammatory
cytokines IFN-g and TNF-a as well as IL-17 by donor T cells
indicate that PLX51107 and PLX2853 are effectively targeting
both the Th1 and Th17 subsets. These effects are likely
responsible for the observed acute GVHD clinical response and
improved survival. It will be interesting to explore whether the
reduction in Th1 and Th17 phenotypes corresponds to an
emergence of a larger Th2 population.

While acute GVHD is mediated by T cells, the role of APCs in
the pathogenesis of the disease cannot be ignored. Induction of acute
GVHD occurs when APCs from the recipient encounter donor
T cells, which leads to the expansion, differentiation, and migration
of these T cells (1, 3, 4, 6). Our results have shown that PLX51107
and PLX2853 have profound effects on dendritic cell maturation and
cytokine secretion in vitro and in vivo. These findings combined
with the effects on T cell inflammatory response show that these
compounds have the ability to combat GVHD pathogenesis at both
the effector and responder levels. Further investigation is required to
Frontiers in Oncology | www.frontiersin.org 10
elucidate the mechanism behind the observed effects on APCs.
Importantly, we also show that BET inhibition via PLX51107/2853
preserves Tregs, a population responsible for dampening
inflammatory activity of other Th subsets.

An intriguing finding from this study was upregulation of
STAT1 upon BET inhibition with PLX51107 and PLX2853,
which is in line with previous studies (58, 59). This asserts that
the anti-inflammatory effects of BRD4 inhibition are independent
of STAT1, which is a target of the currently FDA approved Jak1/2
inhibitor, ruxolitinib, for steroid refractory acute GVHD. Thus,
potential benefits may be conferred by combination therapy with
BRD4/JAK inhibition. This strategy is currently being employed in
treatment of myeloproliferative disorders (60, 61), and it will be
interesting to uncover the effects of this treatment in acute GVHD.
Our group is currently investigating the effects of combined BRD4
and JAK dual inhibition in mouse models of aGVHD.

In conclusion, we describe the potent anti-inflammatory
effects of BET inhibition using PLX51107/2853 in mouse
models of aGVHD and GVL. Given these promising
preclinical results, PLX51107 will enter clinical trial for
refractory acute GVHD in a Phase 1 safety, biological efficacy
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analysis at our center (NCT04910152). Furthermore, studies
from the correlative analyses will examine the clinical efficacy
of IL-23/STAT3 inhibition with this novel BET inhibitor.
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